The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Nov. 19, 1996
Filed:
Nov. 21, 1994
Yeongming Hwang, Los Altos Hills, CA (US);
Vito J Jakstys, Penn Valley, CA (US);
Space Systems/Loral, Inc., Palo Alto, CA (US);
Abstract
A composite antenna for use in satellite communication provides both the functions of multiple beams and a shaped beam radiated from a single radiating aperture. The radiating aperture may employ a mirror or a lens. Transmitted radiation from an array of radiators is coupled via a subreflector to the main reflector or lens which constitutes the radiating aperture of the antenna system. During reception of radiant-energy signals, signals received by the main reflector or lens are coupled via a separate subreflector to a separate array of receiving radiators operated at a frequency band different from that of the transmit array. The two subreflectors are combined into a single subreflector assembly employing a metallic concave reflector covered by a layer or coating of frequency selective optical material which allows for propagation of radiation at one frequency to the metal reflector while reflecting radiation in the other frequency band from a surface of the coating. Separate beamformers are employed for receiving and transmitting radiant-energy signals, the beamformers combining signals of clusters of radiators to provide for multiple beams wherein each of a plurality of the beams is formed by a cluster of radiators. Additional connection is provided via diplexers to the beamformers to select radiators to be employed for generation of shaped beams for both reception and transmission. The reflecting surfaces have diameters much larger than the diameters of the radiators to provide for individual beams from each of the radiators.