The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Nov. 19, 1996
Filed:
May. 15, 1995
Myra T Olm, Webster, NY (US);
Richard L Daubendiek, Rochester, NY (US);
Joseph C Deaton, Rochester, NY (US);
Donald L Black, Webster, NY (US);
Timothy R Gersey, Rochester, NY (US);
Joseph G Lighthouse, Rochester, NY (US);
Xin Wen, Rochester, NY (US);
Robert D Wilson, Rochester, NY (US);
Eastman Kodak Company, Rochester, NY (US);
Abstract
A chemically and spectrally sensitized tabular grain emulsion is disclosed including tabular grains (a) having {111} major faces, (b) containing greater than 70 mole percent bromide and at least 0.25 mole percent iodide, based on silver, (c) accounting for greater than 90 percent of total grain projected area, (d) exhibiting an average equivalent circular diameter of at least 0.7 .mu.m, and (f) exhibiting an average thickness in the range of from less than 0.3 .mu.m to at least 0.07 .mu.m. It has been observed that photographic performance is enhanced when surface chemical sensitization sites include epitaxially deposited silver halide protrusions forming epitaxial junctions with the tabular grains, the protrusions (a) being located on up to 50 percent of the surface area of the tabular grains, (b) having a higher overall solubility than at least that portion of the tabular grains forming epitaxial junction with the protrusions, (c) forming a face centered cubic crystal lattice, and (d) containing a speed enhancing dopant selected to provide shallow electron trapping sites.