The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Nov. 05, 1996
Filed:
Nov. 17, 1995
Minoru Utsumi, Tokyo, JP;
Hiroyuki Obata, Tokyo, JP;
Seiji Take, Tokyo, JP;
Masayuki Iijima, Tokyo, JP;
Hironori Kamiyama, Tokyo, JP;
Dai Nippon Printing Co., Ltd., Tokyo, JP;
Abstract
The present invention provides an electrostatic information-recording medium including an electrode layer (13) and a charge-retaining layer, in which said charge-retaining layer is formed of a laminate of a resin layer (11a) having a low glass transition temperature with a heat-resistant, insulating layer (11b), or an electrostatic information-recording medium comprising at least an electrode layer (13) and a charge-retaining layer (11) in which said charge-retaining layer (11) is formed of a polymer layer (12) containing pentafluorostyrene as a monomer component and having a weight-average molecular weight of 10,000 to 2,000,000, or which includes a photoconductive layer (44) and a charge-retaining layer (43) between a pair of electrodes (42) and (45) and is designed to carry out exposure with the application of voltage between both said electrodes (42) and (45) or apply voltage between both said electrodes (42) and (45) while exposure is carried out, thereby forming an electrostatic latent image, which is then carried on said charge-regaining layer (43) by releasing said charge-retaining layer (43) from said electrode 42, or which includes a charge transport layer (51) on an electrode (52) and is designed to record information on the surface of said charge-transport layer (51) by toner development and then apply electrostatic charges on the surface of said charge transport layer (51) to inject said electrostatic charges into said charge-transport layer through an electrically conductive layer of the toner, thereby forming electrostatic information corresponding to the toner information on said charge transport layer. Thus, the electrostatic information-recording medium can thus be improved in terms of the capability to retain electrostatic information. The electrostatic information retained in this electrostatic information-recording medium is very stable because of being accumulated in the charge-carrying layer. Also, the information can be easily reproduced in the form of information of high quality and resolution by detecting a potential difference between the electrode and the surface potential.