The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Sep. 17, 1996
Filed:
Sep. 28, 1994
Masahiro Koike, Hitachi, JP;
Fuminobu Takahashi, Katsuta, JP;
Hideki Inoue, Hitachi, JP;
Yosinori Musha, Hitachioota, JP;
Shuuji Kamimoto, Hitachi, JP;
Shinji Naito, Hitachioota, JP;
Tsukasa Sasaki, Hitachi, JP;
Hitachi, Ltd., Tokyo, JP;
Abstract
A stress evaluation method for evaluating stress acting on a test piece includes the steps of transmitting acoustic waves including a surface wave, a longitudinal wave, and a shear wave through the test piece; receiving the acoustic waves after they have propagated through the test piece; obtaining acoustic velocities of the surface wave at a non-loaded portion and a loaded portion of the test piece based on the received acoustic waves; evaluating a stress in a surface layer of the test piece based on a difference between the surface wave acoustic velocities at the non-loaded portion and the loaded portion and a predetermined relationship between surface wave acoustic velocities and stresses; obtaining an acoustic velocity of the longitudinal wave at the non-loaded portion based on the received acoustic waves; calculating an acoustic velocity of the shear wave at the loaded portion based on the received acoustic waves and the longitudinal wave acoustic velocity at the non-loaded portion; evaluating an internal average stress in the test piece based on the shear wave acoustic velocity at the loaded portion; evaluating an internal stress distribution in the test piece by correcting a hypothetical internal stress distribution in the test piece based on the stress in the surface layer and the internal average stress; and conducting a diagnosis of the test piece based on the internal stress distribution.