The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Sep. 10, 1996
Filed:
Aug. 29, 1994
David J Costello, Albuquerque, NM (US);
Aleksei Y Dergatchev, Hoover, AL (US);
Warren E Parkhurst, Houston, TX (US);
Valeri G Polushkin, Troitsk, SU;
Sergey A Kokhanovsky, Troitsk, SU;
Cell Robotics, Inc., Albuquerque, NM (US);
Abstract
A laser perforator is disclosed for perforating skin with a perforation to permit blood under a surface of the skin to flow out, the perforator in one embodiment having a laser light source for producing an output laser beam, and a mode distribution means for intercepting the output laser beam to control distribution of laser energy of the output laser beam across the perforation of the skin. A laser perforator is disclosed for perforating skin with a perforation to permit blood under a surface of the skin to flow out, the perforator in one embodiment having a laser light source for producing an output laser beam having an energy level between about 0.1 to about 2.0 Joules, and a mode distribution means for controlling mode distribution of the output laser beam across the perforation of the skin, the mode distribution means including a cylindrical laser rod to produce ring mode distribution of the output laser beam, the cylindrical laser rod having a 90 degree annular corner reflector to produce a ring mode distribution of the output laser beam, a doughnut lens for focusing the output laser beam, the perforation ranging in diameter between about 0.1 to about 2.0 millimeters, in depth between about 0.5 to about 4.0 millimeters, and ranging in width between about 0.05 to about 0.2 millimeters. A method is also disclosed for perforating skin for blood sampling, the method including producing a laser beam from a laser, the beam having an energy level and a plurality of energy modes, distributing the energy modes of the beam by mode distribution means for evenly distributing the energy modes, producing an output beam with an evenly distributed mode distribution, and directing the output beam to the skin and producing a perforation through the skin through which the blood flows. A laser perforator is disclosed for perforating skin with a perforation to permit blood under a surface of the skin to flow out, the perforator having a laser light source for producing an output laser beam, and a mode distribution means for producing a ring shaped profile of the output laser beam.