The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Aug. 20, 1996
Filed:
May. 17, 1995
Kenichi Arakawa, Yokohama, JP;
Kabushiki Kaisha Toshiba, Kanagawa-Ken, JP;
Abstract
A solid-state imaging device capable of removing undesired influences, includes a semiconductor substrate having one of conductive types, a well layer arranged on the substrate and having the other conductive type opposite to the substrate, photo-sensitive pixels recessed in a matrix having a predetermined number and having the conductive type opposite to the well layer to generate signal charges corresponding to an incident light amount, a transfer channel formed along one direction of the photosensitive pixels arranged by the conductive type as the same as that of the substrate to transfer the signal charges generated by the photosensitive pixels, an electrode provided to the transfer channel on a side opposite to the substrate to supply an electric field to the transfer channel, and a barrier well formed of the impurity semiconductor material of the conductive type opposite to the conductive type of the semiconductor substrate in the manner that an impurity density of the well layer becomes longer along the transfer channel and for covering both ends in a width direction of the transfer channel at a plane opposite to the electrode, and for preventing an invasion of signal charges occurring in the well layer into the transfer channel. In such a construction, there is partially formed higher portion of the fringe electric field to the channel in a bulk along the transfer channel, and the partially higher portion of the field is kept as a path in which the signal charges are moving in a high-speed. Therefore, it is possible suppress the decrease of the transfer efficiency of the signal charges in the high-speed operation and to prevent the invasion of false signals such as smear charges by the barrier well provided around.