The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Aug. 13, 1996
Filed:
Dec. 05, 1994
John A Garnaat, Phoenix, AZ (US);
Bruce H Ferrell, Litchfield Park, AZ (US);
William C Woody, Phoenix, AZ (US);
Loral Corporation, New York, NY (US);
Abstract
The data is processed using a quadratic phase removal process to remove quadratic phase variations contained in the interference to compress the interference to its narrowest extent in a range frequency dimension. Partial motion compensation may be optionally employed using the partial motion compensation process to remove incidental Doppler modulation of the interference caused by motion of the radar during data collection, and to center the Doppler spectrum of radar and interference signals at a convenient frequency. The data is processed using an azimuth Fourier transform to compress the interference to its narrowest extent in an azimuth dimension to localize the interference into peaks while leaving the desired radar signals dispersed throughout the data in one or both dimensions. Optionally, another set of interference data, collected and interleaved with the radar video data and delayed a short time with respect to it, may be compressed in range frequency using a similar quadratic phase removal process and partially motion compensated to remove effects of undesired aircraft motion using a partial motion compensation process and compressed in azimuth using an azimuth FFT. The 2-D compressed interference data is then subtracted from the 2-D compressed radar video data by a subtraction process. The data is processed using a thresholding process to find interference peaks in the data. The found peaks are attenuated by attenuating azimuth cells and range cells. The data is processed using a second azimuth Fourier transform to restore the data to its original format. The data is then processed to produce an image for display. This is achieved by processing the data using a final motion compensation process to provide reference point tracking to remove the phase change imparted by the intentional motion of the aircraft during data collection, polar resampling the motion compensated data, weighting and two-dimensional Fourier transforming the polar resampled data, and autofocusing 25 the data to produce the image for display.