The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Aug. 06, 1996
Filed:
Jun. 14, 1993
Michael D Rostoker, San Jose, CA (US);
Carlos Dangelo, Los Gatos, CA (US);
Vijay Nagasamy, Union City, CA (US);
Doron Mintz, Sunnyvale, CA (US);
LSI Logic Corporation, Milpitas, CA (US);
Abstract
A methodology for generating structural descriptions of complex digital devices from high-level descriptions and specifications using a systematic technique to map and enforce consistency of the semantics imbedded in the intent of the original, high-level descriptions. The design activity is essentially a series of transformations operating upon various levels of design representations. At each level, the intended meaning (semantics) and formal software manipulations are captured to derive a more detailed level describing hardware meeting the design goals. Important features of the methodology are: capturing the users concepts, intent, specification, descriptions, constraints and trade-offs; architectural partitioning; what-if analysis at a high level; sizing estimation; timing estimation; architectural trade-off; conceptual design with implementation estimation; and timing closure. The methodology includes using estimators, based on data gathered over a number of realized designs, for partitioning and evaluating a design prior to logic synthesis. From the structural description, a physical implementation of the device is readily realized. Techniques are provided for constraint-driven partitioning of behavioral descriptions, and effective partitioning of high level descriptions for synthesis of multiple chips or blocks at the logic or register transfer levels. The partitioning technique is level-independent, and is integrated with the top-down design process, and takes into account constraints such as area, timing, power, package cost and testability. Iterative refinement is used to arrive at partitions that meet constraints imposed at high levels of abstraction.