The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Aug. 06, 1996
Filed:
Jan. 09, 1995
Paul A Markow, Huntsville, AL (US);
Theodore M Cummings, Huntsville, AL (US);
William D DeBardelaben, South St. Paul, MN (US);
John H McElreath, Huntsville, AL (US);
William Nolle, Hazel Green, AL (US);
Chrysler Corporation, Auburn Hills, MI (US);
Abstract
A gauge, system and method are disclosed for determining the accuracy and performance of a gauge by determining the angular deflection of the gauge needle in response to a known input signal. A frequency generator supplies a predetermined frequency signal or a controller supplies an input signal to a gauge motor which causes deflection of the gauge needle. A video camera is used to capture a video frame corresponding to the visual data indicating the needle deflection. The needle includes a head portion and a remote portion, such as a hub or tail, which show up as high intensity values against the low intensity background in the video frame. The pixel intensity values around the perimeter of a selected portion of the frame are scanned to determine the location of maximum intensity pixels which correspond to either the head or the remote portion of the needle. Alternatively, the image is scanned in terms of color. By ascertaining the locations of the head and the remote portion, the exact deflection of the needle can be quickly and accurately determined. This deflection is then compared against the expected deflection based on the known input signal. If the deviation between the two values is not within an acceptable range, the particular gauge is rejected. The deviation may also be used to calibrate the gauge, for example, by realigning the needle or by storing one or more compensation values to be used by the gauge.