The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jul. 30, 1996
Filed:
Apr. 26, 1994
Nicholas R Van Bavel, Austin, TX (US);
Jeffrey W Scott, Austin, TX (US);
Andrew W Krone, Austin, TX (US);
Crystal Semiconductor, Austin, TX (US);
Abstract
A low precision Finite Impulse Response filter (FIR) is provided for filtering in a digital interpolation operation. The interpolation operation is comprised of two steps, a sampling rate conversion operation for interspersing zeroes between samples in an input sequence and a filtering step of filtering out images that result from this operation. The filtering operation utilizes a FIR filter that utilizes a low precision set of filter coefficients that are selected to tune the frequency response such that the low end frequency response including the pass band, the transition band, and the portion of the stop band immediately after the transition band provides a response equivalent to that commensurate with substantially higher precision FIR filter coefficients. A second, low pass filter section is provided for filtering the high frequency image energy at the output of the FIR filter to provide an overall filter response commensurate to that utilizing substantially higher precision FIR coefficients. The FIR filter coefficients utilized are restricted to the set of {-1, 0, +1} such that an arithmetic-free realization is provided wherein data is stored in a random access memory (68), with the non-zero coefficients for any interpolator output limited to a predetermined number. This predetermined number equals the maximum clock rate divided by the output sampling frequency. For each interpolator output, addresses of the associated data are stored in a ROM (72), which is operable to sequentially generate the addresses for accessing of data from a RAM (68). The sign is then changed, depending upon a sign change bit in the ROM (72), and then accumulated in an output accumulator (82). After all data is accessed from the RAM (68) for a given interpolator output, the accumulator (82) provides this output to the delta-sigma converter.