The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jul. 09, 1996
Filed:
May. 02, 1994
Charles R Cahn, Manhattan Beach, CA (US);
Richard G Keegan, Torrance, CA (US);
Jerry E Knight, Long Beach, CA (US);
Thomas A Stansell, Jr, Rancho Palos Verdes, CA (US);
Magnavox Electronic Systems Company, Fort Wayne, IN (US);
Abstract
Method and apparatus for improving the speed and accuracy of processing signals from global positioning system (GPS) receivers by ensuring access to GPS carrier signals that have been modulated with an encrypted P-code sequence. In one disclosed embodiment of the invention, GPS L1 and L2 signals are correlated with a locally generated P-code signal, bandpass filtered to enhance signal-to-noise ratio performance, and then cross-correlated to obtain a signal with an L1-L2 frequency component that facilitates the resolution of carrier cycle ambiguity. In another embodiment, received GPS signals are immediately converted to digital form, then digitally correlated with in-phase and quadrature components of a locally generated P-code signal. Signals resulting from the correlation are then integrated over timing intervals corresponding to a previously determined encryption period to provide in-phase (I) and quadrature (Q) samples. In one variant of this embodiment, the I and Q samples derived from the L2 GPS signal are digitally squared to obtain an L2 carrier. In another variant, I and Q samples derived from both L1 and L2 signals are cross-correlated to obtain a digital carrier with an L 1-L2 component. Tracking errors for the L1 and L2 P-code signals are computed using a similar digital technique.