The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jun. 18, 1996
Filed:
Apr. 21, 1995
Brett Spivey, Encinitas, CA (US);
Peter Martin, Encinitas, CA (US);
Lee Morsell, Del Mar, CA (US);
Eugene Atlas, Carlsbad, CA (US);
Anthony Pellegrino, New Fairfield, CT (US);
Thermotrex Corporation, San Diego, CA (US);
Abstract
This invention provides an imaging system for producing images from electromagnetic radiation such as x-rays. The system includes a detector comprised of a radiation-absorbing layer sandwiched between an array of CMOS integrated circuits (which we call pixel circuits) and a surface electrode layer transparent to the radiation. Each of the pixel circuits in the array has a charge collecting electrode. An external voltage applied between the surface electrode layer and the charge collecting electrodes produces an electric field across the thickness of the absorbing layer. Radiation passing through the transparent surface electrode layer is absorbed in the absorbing layer creating electron/hole pairs in the absorbing layer. A portion of the liberated holes (or electrons) migrates under the influence of the electric field toward the charge collecting electrodes, which collect the holes and store them as charges on small capacitors located within each circuit. This process results in a discrete distribution of stored voltages across the array proportional to the distribution of radiation photons incident on the absorbing layer. Circuitry in each pixel provides for the voltage on each pixel capacitor to be recorded via readout circuitry and permits the resetting of the pixel capacitors. Preferred embodiments provide fine resolution with a large number of pixels with dimensions about the size of the thickness of human hair.