The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
May. 14, 1996
Filed:
Feb. 28, 1994
Akira Muramatsu, Kawasaki, JP;
Ikuo Yoshihara, Tama, JP;
Kazuo Nakao, Sagamihara, JP;
Takehisa Hayashi, Kodaira, JP;
Teruo Tanaka, Hachioji, JP;
Shigeo Nagashima, Hachioji, JP;
Hitachi, Ltd., Tokyo, JP;
Abstract
In a parallel computer including L=n.sub.1 .times.n.sub.2 .times. - - - .times.n.sub.N processor element or external devices (hereafter represented by processor elements), an interconnection network of processor elements using L.times.(1/n.sub.1 +1/n.sub.2 + - - - +1/n.sub.N) crossbar switches in total comprises N dimensional lattice coordinates (i.sub.1, i.sub.2, - - - , i.sub.N), 0.ltoreq.i.sub.1 .ltoreq.n.sub.1 -1, 0.ltoreq.i.sub.2 .ltoreq.n.sub.2 -1; - - - , 0.ltoreq.i.sub.N ; and .ltoreq.n.sub.N -1 given to each processor element as the processor element number, crossbar switches for decoding a dimensional field in a processor element number having specific position and length depending upon the number of lattice points of a particular dimension and for performing the switching operation with regard to the dimension, interconnection of n.sub.k processor elements having processor element numbers, which are different only in the k-th dimensional coordinate for arbitrary k, i.e., having processor element numbers ##EQU1## by using one of the crossbar switches, each of the crossbar switches having n.sub.k inputs and n.sub.k outputs, and the interconnection performed with respect to all (L/n.sub.k sets) of coordinates (i.sub.1, i.sub.2, - - - , i.sub.k-1, i.sub.k+1, - - - , i.sub.N) of N-1 dimensional subspace excluding the k-th dimension, the interconnection being further performed for all values of k (1.ltoreq.k.ltoreq.N).