The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Apr. 30, 1996

Filed:

Dec. 08, 1994
Applicant:
Inventors:

Wol-Yon Whang, Daejeon, KR;

Jang-Joo Kim, Daejeon, KR;

Tae-Hyoung Zyung, Daejeon, KR;

Min-Chul Oh, Daejeon, KR;

Attorney:
Primary Examiner:
Int. Cl.
CPC ...
G02F / ;
U.S. Cl.
CPC ...
385-8 ; 385-4 ;
Abstract

A TE-TM mode converter of a polymer electro-optic polarization waveguide type uses the electro-optic birefringence and the electro-optic effect as a non-linear optical waveguide medium, in which an optical director formed during the poling of a polymer thin film is determined by the direction of the poling electrical field. The poling electrode design enables the optical director having the angle of 45.degree. to the electrical direction of the TE and TM modes to be formed in the polymer thin film. When the waveguide receives the incident light of the TE mode or TM mode, the TE (or TM) mode is switched into the TM (or TE) mode by an effective refraction factor between the optical director and the director perpendicular thereto. If a length of the poling electrode and the birefringence of the waveguide is adjusted, the changes of various electo-optic polarization states are possible. The poled thin film has an electro-optic effect. If a voltage is applied to the thin film, the size of the birefringence derived by the poling is changeable. The use of the electro-optic effect enables the outputting state of the waveguide to be maintained at the TE or TM mode by a bias electrode, and if the switching voltage is applied to the waveguide, the TE-TM mode switching can be accomplished.


Find Patent Forward Citations

Loading…