The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Apr. 02, 1996

Filed:

Jul. 19, 1995
Applicant:
Inventors:

William K Bischel, Menlo Park, CA (US);

Murray K Reed, Palo Alto, CA (US);

Daniel K Negus, La Honda, CA (US);

George Frangineas, Hayward, CA (US);

Assignee:

Coherent, Inc., Santa Clara, CA (US);

Attorneys:
Primary Examiner:
Int. Cl.
CPC ...
H01S / ;
U.S. Cl.
CPC ...
372 33 ; 372108 ; 372-9 ; 372 27 ;
Abstract

A system is disclosed for minimizing the depolarization of a laser beam due to thermally induced birefringence in a rod-shaped gain medium over a wide range of excitation levels. After passing through the gain medium, the polarization of the beam is rotated by ninety degrees and either redirected back into the same gain medium or a substantially identical gain medium. By this arrangement, the portion of the beam that was radially polarized during the first pass is tangentially polarized during the second pass so that the original polarization is restored. In order to maximize the compensation, a relay image system is used to generate an image of the beam in the gain medium as it existed during the first pass and project that image into the gain medium during the second pass. The magnification of the relayed image is substantially one to one with respect to the actual image. By using a relayed image with a unity magnification, the size of the beam and the angle and the position of the rays in the beam are preserved at varying thermal loads. In this manner, maximum coincidence of the rays during the two passes is achieved. In the case of asymmetric pumping, performance can be enhanced by inverting the image of the beam prior to the second pass through the gain medium. The subject system is particularly useful for maximizing the fidelity of a phase conjugate reflector used in a solid state amplifier.


Find Patent Forward Citations

Loading…