The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Feb. 20, 1996
Filed:
Sep. 17, 1992
Roger W Pryor, Bloomfield Township, MI (US);
Antony B Brennan, Gainesville, FL (US);
James H Adair, Gainesville, FL (US);
Rajiv K Singh, Gainesville, FL (US);
Board of Governors of Wayne State University, Detroit, MI (US);
Abstract
A method is provided for improving the scratch or surface wear resistance of substrates by embedding discrete, hard particles within the surface layer of the substrate. Discrete, hard particles are applied to the substrate surface and then embedded within and bonded to the surface layer of the substrate by softening the substrate surface layer by either thermal or solvent means. Suitable substrate materials include thermoplastics, thermoset plastics, polymers, glass, soft metals, and composites. Suitable hard particles include diamond, silicon dioxide, aluminum oxide, cubic boron nitride, boron carbide, silicon carbide, silicon nitride, tantalum carbide, titanium carbide, titanium nitride, tungsten carbide, and zirconia alloys containing at least one phase stabilization additive selected from the group yttrium, hafnium, calcium, magnesium, and cesium. Scratch resistant substrates or articles having discrete, hard particles embedded within the surface layer of the substrate or article are also provided. These substrates or articles essentially have the surface wear characteristics of the hard particles or material embedded within the surface layer. Thus, it is possible to prepare plastic materials or articles having significantly improved scratch or surface wear resistance without significantly increasing the weight or external dimensions of the plastic materials or articles.