The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Nov. 21, 1995
Filed:
Dec. 02, 1993
Robert J Fan, Canoga Park, CA (US);
LiteCom, Inc., Canoga Park, CA (US);
Abstract
Optical fibers typically used for data signal transmission are connected to each other in an orientation which provides self-aligning of the fiber ends. An alignment cavity is used to accept two optical fibers and guide them to a precise position with accurate alignment of the cores of the fibers. A housing unit may be employed to secure the optically aligned, joined fibers in an isolated, fixed orientation. The alignment cavity can be re-positioned automatically by the fibers entering to assure a preferred optimum alignment of the fiber ends in a vee groove internal configuration. Retaining elements are crimped to secure the fiber ends in the preferred orientation. The retaining elements may have an opening through which the optical fibers, bare or buffered may pass. Retaining elements may also capture the strength members of the optical fiber cables. The method of joining the fibers includes fiber end preparation, buffer stripping and strength member/cable jacket preparation, placement of retaining members, crimping and/or heat activation of joining members, and fixing the fibers/cables within a protective housing. Retaining of the buffered fibers and/or of cable in housing ends maintains fiber-to-fiber alignment in a fixed relationship with the housing, while transferring all tensile cable stress to the rigid housing, keeping the optical fibers isolated from any tensile stresses.