The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Nov. 14, 1995

Filed:

May. 27, 1994
Applicant:
Inventors:

Christopher J Connolly, Stamford, CT (US);

Thomas H Lawrence, Seymour, CT (US);

Joseph J Mankaukas, Ansonia, CT (US);

John J Pawlowski, Shelton, CT (US);

Matthew T Smith, Milford, CT (US);

Assignee:

United Technologies Corporation, Hartford, CT (US);

Attorney:
Primary Examiner:
Assistant Examiner:
Int. Cl.
CPC ...
B64D / ;
U.S. Cl.
CPC ...
2441371 ; 2441374 ; 395900 ; 414 21 ;
Abstract

A helicopter external cargo suspension system (12) has load sensors (19,20) at each suspension point for sensing the magnitude of a load (32) at each suspension point. A delay period (FIG. 6) is determined based on the magnitude of the load, and a load is released if one of the following failure modes occurs for a period which exceed the delay period: one of the suspension points is unloaded, the magnitude of the load exceeds a maximum threshold magnitude, or if the distribution of the load, as indicated by the difference in magnitude at each suspension point, exceeds a difference threshold magnitude. If the magnitude of the load is below a minimum threshold magnitude, the load will be carried by one of the suspension points in response to a failure of the other suspension points. Alternatively, the load information is converted from crisp values to fuzzy inputs (700) wherein the detected values are fuzzified by assigning a membership weight at discrete points or segments on a normalized scale; a new mode fuzzy output (707) is provided by applying a compositional rule of inference (705) across each fuzzy input (702) and a composite mode selection rule base (710), the new mode fuzzy output (707) is converted into a crisp output by taking the weighted sum of the membership weight at each point on the normalized scale in excess of a threshold value (712), and new mode is determined by comparing the new mode crisp output to a set of new mode membership ranges (FIGS. 8e and 9e).


Find Patent Forward Citations

Loading…