The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Oct. 10, 1995
Filed:
Sep. 01, 1994
David A Wolze, San Jose, CA (US);
Dionex Corporation, Sunnyvale, CA (US);
Abstract
Flowrate in a precision pump used for liquid chromatography employs a digital control system incorporating artificial intelligence. The pump system operates in a default flow mode, wherein real-time pressure feedback is not used to control motor speed, or in pressure mode, wherein motor speed is controlled by the pump system pressure point. The artificial intelligence commands mode changes to pressure mode when the constant displacement flow measurement time is within a threshold relative to commanded flowrate, and when the higher pressure piston is being measured. Flow mode pressure ripple is minimized by monitoring pressure points and commanding motor speed change at appropriate positions during the motor cam rotation. Pressure mode uses the higher pressurized piston as a reference for constant displacement flow measurement and provides accurate flowrate even if one piston is leaky. In pressure mode, the artificial intelligence monitors for intake cycle oscillation and optimizes a highest system pressure gain dynamically. By determining the duration of hydraulic intake and activating proportioning only during the constant intake flow portion of an intake cycle, constant flowrate proportioning is provided. The present invention compensates for a variety of system and environmental variables including leaky valves, air bubbles, a leaky cylinder head, pressure changes, and variations in anticipated compliance and can maintain a flowrate constant within about .+-.1% without using real-time pressure feedback.