The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Oct. 03, 1995

Filed:

Feb. 28, 1994
Applicant:
Inventor:

Michael J Grubisich, San Jose, CA (US);

Assignee:

National Semiconductor Corporation, Santa Clara, CA (US);

Attorneys:
Primary Examiner:
Assistant Examiner:
Int. Cl.
CPC ...
H01L / ;
U.S. Cl.
CPC ...
437 34 ; 437 59 ; 437 76 ; 437 70 ; 148D / ;
Abstract

In a bipolar or BiCMOS process, a heavily doped buried layer of a first conductivity type and a heavily doped channel stop region of a second conductivity type are formed in a lightly doped substrate of the second conductivity type. A lightly doped epitaxial layer of the first conductivity type is grown. An implant of the first conductivity type creates a guard ring around the bipolar transistor active region and also creates a higher-doped collector region inside the active region. In the BiCMOS process, during the formation of CMOS wells, a silicon nitride mask over the bipolar transistor inhibits oxidation of the epitaxial layer and the oxidation-enhanced diffusion of the buried layer. As a result, the epitaxial layer can be made thinner, reducing the collector resistance. The MOS transistor wells can be formed without an underlying buried layer, simplifying the process and decoupling the bipolar and MOS transistor characteristics from each other. A heavy implant of the second conductivity type creates a field implant region around each transistor. Around the bipolar transistor, the field implant region meets the channel stop region. Field oxide is grown over the field implant region by LOCOS process. A base region is formed inside the guard ring. Other features and embodiments are described in the specification, the drawings and the claims.


Find Patent Forward Citations

Loading…