The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Sep. 12, 1995
Filed:
Dec. 22, 1993
Steven J Fortune, Summit, NJ (US);
David M Gay, New Providence, NJ (US);
Brian W Kernighan, Berkeley Heights, NJ (US);
Orlando Landron, Shrewsbury Township, Monmouth County, NJ (US);
Reinaldo A Valenzuela, Holmdel, NJ (US);
Margaret H Wright, Berkeley Heights, NJ (US);
AT&T Corp., Murray Hill, NJ (US);
Abstract
Techniques are disclosed for predicting RF propagation within a structure such as a building. A reference transmitter location and a plurality of reference receiver locations are selected. For each reference receiver location, RF propagation pathways are determined with respect to the reference transmitter location. The RF propagation pathways include a direct path joining the reference transmitter location to a given reference receiver location across a straight-line path, as well as one or more reflection paths joining the reference transmitter location to a given reference receiver location via reflections from one or more reflective surfaces. One or more propagation pathways may pass through an RF obstacle, such as, for example, a lossy dielectric material. Each reflective surface and RF obstacle is associated with a reflection coefficient and a transmission coefficient. These coefficients are computed for each object and surface from a multilayer dielectric model, maintaining angle and polarization dependencies. For each propagation pathway, a propagation component consisting of the propagation loss relative to free-space propagation is calculated as the product of the magnitude squared of the reflection and transmission coefficients. The local mean of received RF power at each of the reference receiver locations is calculated as the scalar sum of the powers of all the propagation pathway components reaching the specified location.