The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Aug. 15, 1995
Filed:
May. 11, 1994
Cynthia T Clague, Minneapolis, MN (US);
Perry L Blackshear, Jr, Mahtomedi, MN (US);
The Regents of the University of Minnesota, Minneapolis, MN (US);
Abstract
A probe for use in collecting liquids entrained with a gaseous component, particularly collecting a patient's blood with entrained gas bubbles from a surgical site for autologous reinfusion. The probe separates the gaseous component from the collected liquid, particularly separating air bubbles from blood cells to inhibit hemolysis, platelet degradation and protein denaturation. An elongated probe body has a distal end to be inserted into the liquid to be collected through an inlet by jet pump action into a centrally disposed mixing chamber. A diffuser is formed within the probe body proximal to and in axial alignment with the inlet and mixing chamber leading to a liquid exit. A jet pump nozzle is formed in the probe distal tip surrounding the inlet in the form of an annular chamber into which pressurized drive fluid is introduced through a distribution channel system extending along the probe body from the proximal end. The drive fluid is ejected in a swirling vortex from the jet pump nozzle around the periphery of the mixing chamber effecting a sub-atmospheric pressure for suctioning the liquid to be collected and the gaseous component thereof into the inlet and mixing chamber. The drive fluid mixes therewith in the swirling vortex and propels the mixture into the diffuser while concentrating the gaseous component in the center of the swirling vortex as a stream. A gas evacuation tube is oriented in the centrally disposed concentrated gaseous stream for evacuating the gaseous component from the mixture before it is propelled into the diffuser. In the autologous reinfusion context, the entrained air bubbles are concentrated and removed in the probe from the blood as they are suctioned into the swirling vortex to reduce hemolysis. When mixed in the vortex, the blood and drive fluid mixture is pressurized to inhibit further air bubble formation.