The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jun. 20, 1995
Filed:
Jan. 21, 1993
Ronald M Finnila, Carlsbad, CA (US);
Hughes Aircraft Company, Los Angeles, CA (US);
Abstract
A method of providing a first and a second Silicon-on-Insulator (SOI) wafer, wherein each SOI wafer includes a silicon layer separated from a bulk silicon substrate by a layer of dielectric material, typically SiO2. Next, at least one electrical feedthrough is formed in each of the silicon layers and active and passive devices are formed in each of the thin silicon layers. Next, interconnects are formed that overlie the silicon layer and are electrically coupled to the feedthrough. One of the wafers is then attached to a temporary substrate such that the interconnects are interposed between the thin silicon layer and the temporary substrate. The bulk silicon substrate of the wafer having the temporary substrate is then etched to expose the dielectric layer. Further interconnects are then formed through the exposed dielectric layer for electrically contacting the at least one feedthrough. This results in the formation of a first circuit assembly. A next step then couples the further interconnects of the circuit assembly to the interconnects of the second SOI wafer, the second SOI wafer having a bulk substrate, a dielectric layer overlying a surface of the substrate, and a layer of processed silicon overlying the dielectric layer. The temporary substrate is then removed. Additional circuit assemblies may then be stacked and interconnected to form a 3d integrated circuit.