The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
May. 16, 1995
Filed:
Sep. 15, 1994
U.S. Philips Corporation, New York, NY (US);
Abstract
A semiconductor device includes a number of programmable elements arranged in a matrix of rows and columns. The elements each have a doped semiconductor region (10) and a conductor region (20) which are mutually separated by an insulating layer (8). The conductor region (20) can be a material suitable for forming a rectifying junction (35) with the material of the semiconductor region (10). Within a row, the conductor regions of the programmable elements present therein are coupled to a common row conductor (21 . . . 23), and within a column the semiconductor regions of the programmable elements situated therein are connected to a common column conductor (11 . . . 14). To program an element, a programming voltage V.sub.PROG can be applied between the column and row conductors associated with the element to be programmed during operation, which voltage is greater than the breakdown voltage of at least a portion of the insulating layer (8) situated between the semiconductor region (10) and the conductor region (20) of the element. The programming voltage is applied with such a polarity that majority charge carriers in the semiconductor region (10) are drawn to an interface (4) between the semiconductor region (10) and the insulating layer (8), forming an accumulation layer (31) there. Between the remaining column and row conductors, on the other hand, the programming voltage is offered with an opposite polarity. Thus the programming of the matrix can take place, if so desired, by means of only a single voltage level V.sub.PROG.