The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Apr. 18, 1995
Filed:
Oct. 15, 1993
Bruce A Gurney, Santa Clara, CA (US);
Haralambos Lefakis, San Jose, CA (US);
Omar U Need, III, San Jose, CA (US);
Stuart S Parkin, San Jose, CA (US);
Virgil S Speriosu, San Jose, CA (US);
Dennis R Wilhoit, Morgan Hill, CA (US);
International Business Machines Corporation, Armonk, NY (US);
Abstract
A magnetic recording data storage system of high recording density is made possible by an improved magnetoresistive sensor. The sensor has a ferromagnetic sensing layer that is a laminated layer of two ferromagnetic films antiferromagnetically coupled to one another and separated by an antiferromagnetically coupling film. By appropriate selection of the thickness of the nonmagnetic antiferromagnetically coupling film, the ferromagnetic films become antiferromagnetically coupled and their magnetizations rotate as a single rigid unit in the presence of the external magnetic field to be sensed. The ferromagnetic sensing layer can be used in conventional magnetoresistive sensors of the anisotropic magnetoresistive (AMR) type and in spin valve magnetoresistive (SVMR) sensors. In the spin valve sensor, the laminated ferromagnetic sensing layer serves as the free layer and is preferably formed of two films of nickel-iron (Ni-Fe) separated by a ruthenium (Ru) antiferromagnetically coupling film. Because the two ferromagnetic films have their moments aligned antiparallel, then, assuming the two films are made of the same material, by selecting the two films to have different thicknesses the effective free layer thickness can be reduced without significantly reducing the magnetoresistance.