The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Apr. 04, 1995
Filed:
Jan. 29, 1992
Takao Umeda, Mito, JP;
Toru Miyasaka, Hitachi, JP;
Osamu Namikawa, Katsuta, JP;
Isamu Komatsu, Takahagi, JP;
Hitachi, Ltd., Tokyo, JP;
Hitachi Koki Co., Ltd., Tokyo, JP;
Abstract
A potential of a reference potential measure section is set to a desired value of a potential of a drum surface (charge receptive surface) such that a potential of the reference potential measure section and a potential of the charge receptive surface are detected by a surface potential detect device during a rotation of the drum to obtain a difference between the values of the measured potential, so that an operation of a charger is controlled to be reduced to zero, thereby changing the potential of the charge receptive surface. This enables the surface potential to be precisely controlled without necessitating a frequent calibration of the surface potential detect device. In addition, the potential of the reference potential measure section is appropriately set depending on a develop condition so as to prevent a toner, when the portion passes a developer at a position over a circumferential area of the drum, from being fixed thereonto. Moreover, a potential of the reference potential detect section and a potential of the charge receptive surface are detected by use of the surface potential detect device so as to examine a difference therebetween and a distribution thereof, which enables a change as well as an irregular variation of the potential due to deterioration of the charge receptive surface to be analyzed. Based on the analysis, it is possible to detect the deterioration of the photoconductive body as the charge receptive surface so as to evaluate the life thereof. Furthermore, when an information processing system is configured by combining a computer with an electrostatic recording apparatus according to the present invention, there can be provided a picture quality control system effecting a precise control depending on a characteristic of the photoconductive body.