The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Jan. 24, 1995

Filed:

Aug. 28, 1992
Applicant:
Inventors:

George W Rogers, King George, VA (US);

Jeffrey L Solka, Fredericksburg, VA (US);

Carey E Priebe, King George, VA (US);

Wendy L Poston, Fredericksburg, VA (US);

Attorney:
Primary Examiner:
Assistant Examiner:
Int. Cl.
CPC ...
G06K / ;
U.S. Cl.
CPC ...
395 23 ; 395 24 ;
Abstract

A self-organizing neural network and method for classifying a pattern signature having N-features is provided. The network provides a posteriori conditional class probability that the pattern signature belongs to a selected class from a plurality of classes with which the neural network was trained. In its training mode, a plurality of training vectors is processed to generate an N-feature, N-dimensional space defined by a set of non-overlapping trained clusters. Each training vector has N-feature coordinates and a class coordinate. Each trained cluster has a center and a radius defined by a vigilance parameter. The center of each trained cluster is a reference vector that represents a recursive mean of the N-feature coordinates from training vectors bounded by a corresponding trained cluster. Each reference vector defines a fractional probability associated with the selected class based upon a ratio of i) a count of training vectors from the selected class that are bounded by the corresponding trained cluster to ii) a total count of training vectors bounded by the corresponding trained cluster. In the exercise mode, an input vector defines the pattern signature to be classified. The input vector has N-feature coordinates associated with an unknown class. One of the reference vectors is selected so as to minimize differences with the N-feature coordinates of the input vector. The fractional probability of the selected one of the reference vectors is the a posteriori conditional class probability that the input vector belongs to the selected class.


Find Patent Forward Citations

Loading…