The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Jan. 03, 1995

Filed:

Oct. 04, 1993
Applicant:
Inventors:

Shouxiang Hu, Washington, DC (US);

Yanping Guo, Silver Spring, MD (US);

Assignee:

Other;

Attorney:
Primary Examiner:
Assistant Examiner:
Int. Cl.
CPC ...
G02F / ; H01J / ;
U.S. Cl.
CPC ...
359 47 ; 359 87 ; 359262 ; 313465 ; 348466 ; 348768 ;
Abstract

An electron beam addressed electro-optical (EO) light valve (EOLV) having a matrix of openings formed on and extending through an input conductive layer and further extends into an electrically insulating layer. A partially conductive coating is formed on the surface of each opening in the insulating layer, and has a substantially good electrical contact with the input conductive layer. An EO layer, formed of either a liquid crystal (LC) or a solid state EO crystal, is positioned on the optical output side of the insulating layer. Through the openings electrons from a scanning electron beam can reach and be directly deposited on the partially conductive coatings at a depth substantially close to the EO layer and substantially far away from the input conductive layer. The insulating material surrounding the openings in the insulating layer strictly prevents these deposited electrons from inter-opening motion. These deposited electrons are then discharged along the partially conductive coatings to the input conductive layer before the next scanning cycle. Accordingly, a precisely controllable voltage across each pixel of the EO layer can be obtained. This makes it possible to obtain a precisely controllable orientation state of the molecules in each pixel of the EO layer corresponding to the modulation of the scanning electron beam. Thus an EOLV with significantly high resolution, high contrast ratio, fast response speed, high display gray scale and high sensitivity responding to the input modulation can be achieved according to this invention.


Find Patent Forward Citations

Loading…