The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Dec. 20, 1994

Filed:

Mar. 17, 1993
Applicant:
Inventors:

Xueming Zou, Chesterland, OH (US);

John L Patrick, Chagrin Falls, OH (US);

James M McNally, Chagrin Falls, OH (US);

Assignee:

Picker International, Inc., Highland Hts., OH (US);

Attorney:
Primary Examiner:
Int. Cl.
CPC ...
G01V / ;
U.S. Cl.
CPC ...
324318 ; 324309 ;
Abstract

Superconducting magnets (10) of a magnetic resonance imager create static magnetic fields through an examination region (12). Gradient magnetic field coils (30) under control of a gradient magnetic field control (42) generate gradient magnetic fields across the examination region (12), as a whole. A plurality of surface coils (36, 38) receive radio frequency signals from each of two distinct subregions within the examination region (12). The two receiver coils are connected with separate receivers (60.sub.1, 60.sub.2) which demodulate the received magnetic resonance signals. The magnetic resonance signals are reconstructed (76) into an image representation (80, 82) of the first and second subregions. In the embodiment of FIGS. 1 and 2, a radio frequency transmitter (40) and a whole body coil (32) generate and manipulate the magnetic resonance signals within the first and second subregions. In the embodiment of FIGS. 3 and 4, a plurality of transmitters (40.sub.1, 40.sub.2, . . . ) convey RF signals to the surface coils such that the surface coils operate in both a transmit and receive mode. Regardless whether a single transmitter or a series of transmitters is utilized, a sequence control (44) controls the transmitter(s) and the gradient control (42) to conduct conventional magnetic resonance imaging sequences in coordination in both subregions.


Find Patent Forward Citations

Loading…