The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Nov. 22, 1994
Filed:
Jun. 05, 1992
Mark S DiIorio, San Diego, CA (US);
Shozo Yoshizumi, San Diego, CA (US);
Kai-Yueh Yang, San Diego, CA (US);
Biomagnetic Technologies, Inc., San Diego, CA (US);
Abstract
A microbridge superconductor device includes a substrate, made of a material such as LaAlO.sub.3, having a lower planar substrate surface, an inclined surface having an overall upward inclination of from about 20 to about 80 degrees from the plane of the lower planar substrate surface, and an upper planar substrate surface parallel to the lower planar substrate surface and separated from the lower planar substrate surface by the inclined surface. A layer of a c-axis oriented superconductor material, made of a material such as YBa.sub.2 Cu.sub.3 O.sub.7-x, is epitaxially deposited on the lower planar substrate surface, and has an exposed a-axis edge adjacent the intersection of the lower planar substrate surface with the inclined surface. The a-axis exposed edge is beveled away from the intersection. A layer of a c-axis oriented superconductor material is epitaxially deposited on the upper planar substrate surface, and has an exposed a-axis edge adjacent the inclined surface. A gap lies between the two a-axis exposed edges. A layer of a non-superconductor material, such as silver, lies in the gap between the two exposed a-axis edges, thereby defining a SNS superconductor microbridge device. The layers of superconductor material are preferably patterned to form a Josephson junction device such as a superconducting quantum interference device.