The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Nov. 15, 1994
Filed:
Apr. 03, 1992
Vishwani D Agrawal, New Providence, NJ (US);
Tapan J Chakraborty, Mercerville, NJ (US);
AT&T Bell Laboratories, Murray Hill, NJ (US);
Abstract
To detect a delay fault along a signal path of interest (12) in a sequential digital circuit (10), a source flip-flop (14) and a destination flip-flop (16), proximate the beginning and end of the path, respectively, are designated in the circuit. Next, the signal path is activated to establish what logic values are necessary at the input of each of a set of combinational elements (18.sub.1 -18.sub.p) in the path to propagate a selected signal transition from the source flip-flop to the destination flip-flop. A first and second backward justification process is carried out to synthesize a first sequence to propagate a selected logic value from a primary circuit input to the source flip-flop to cause it to generate the selected signal transition to propagate to the destination flip-flop. A second backward justification process is carried out to synthesize a second vector sequence which serves to propagate the value latched in the destination flip-flop to a primary output. The vectors of the first and second sequences are then applied at periodic intervals using a slow clock, except that the rated clock is applied to the last vector of the first sequence to propagate the logic value affected by the delay fault ultimately to the primary output. By comparing the value propagated to the primary output to the expected correct logic value, a determination can be made as to the existence of a delay fault.