The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Oct. 11, 1994
Filed:
Jun. 17, 1993
William Rappoport, Weston, CT (US);
Edward Zalewski, Sandy Hook, CT (US);
Peter Silverglate, Monroe, CT (US);
Hughes Aircraft Company, Los Angeles, CA (US);
Abstract
A focal plane array employing a segmented multiplexer having differing unit cell capacitances and amplifiers in respective segments of the multiplexer. The segmented multiplexer accommodates and processes the maximum expected signal at differing illumination levels without saturation and provides for optimized noise levels in each of its segments. The focal plane array includes an array of detectors and an array of multiplexer cells respectively coupled thereto. The array of detectors comprises a plurality of groups of detector elements that each detect energy in a predetermined spectral region. The array of multiplexer cells comprise a plurality of groups of multiplexer cells that are respectively coupled to the plurality of groups of detector elements. Each multiplexer cell includes an integrating capacitor and an amplifier, and the integrating capacitor of each cell in a particular group has a predetermined capacitance whose charge integration capability corresponds to an expected maximum intensity level of radiation in the particular spectral region that is detected by the corresponding detector element in the detector array. The optimization of the characteristics of the integrating capacitor and amplifier provided for optimized detection of the radiation in that spectral region. By using more than one unit cell design, the response of each portion of the focal plane array is optimized to the range of expected intensities that will be incident on that portion of the focal plane array. In this manner, saturation is avoided in those portions of the focal plane that are expected to observe very high light intensities. In those portions of the focal plane that are expected to observe low light intensities, the cell amplifiers are designed to accommodate the lower intensity levels with decreased noise.