The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Sep. 20, 1994

Filed:

Feb. 23, 1993
Applicant:
Inventor:

Naum Ruhovets, Houston, TX (US);

Assignee:
Attorney:
Primary Examiner:
Assistant Examiner:
Int. Cl.
CPC ...
G01V / ; E21B / ;
U.S. Cl.
CPC ...
364422 ; 73152 ;
Abstract

Evaluation of thinly laminated shaly sand reservoirs has long been one of the most difficult problems of log analysis. A primary reason is that only shallow shale indicators such as a Dipmeter, other microresistivity devices, or an ultra high frequency dielectric tool, etc. accomplish resolutions compatible with the most thinly bedded shale or sand laminae. To overcome this problem a technique has been developed to reconstruct deep Induction conductivity and to compute effective porosity and water saturation consistent with the high vertical resolution tools such as the Dipmeter. To achieve greater accuracy in the evaluation of shale content and porosity, the volumes of shale are initially estimated from both a density-neutron crossplot and a high resolution shale indicator which has been integrated to the vertical resolution of the density and neutron logs. Then shale parameters for these logs are automatically adjusted within limits suggested by log data in such a way that computed shale volumes from the shale indicator and density-neutron crossplot match each other. The adjusted parameters are used to compute porosity and shale volume and the mode of distribution from the density and neutron logs and to recompute these results to the high vertical resolution level. This information is in turn used to reconstruct the deep Induction conductivity to the same vertical resolution. The technique allows water saturation determination from a Waxman-Smits type model when both dispersed and laminated clay types are present.


Find Patent Forward Citations

Loading…