The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Aug. 16, 1994
Filed:
Apr. 12, 1990
Suzanne Winters, Salt Lake City, UT (US);
Kenneth A Solen, Orem, UT (US);
Clifton G Sanders, Salt Lake City, UT (US);
JD Mortensen, Sandy, UT (US);
Gaylord Berry, Salt Lake City, UT (US);
Cardiopulmonics, Inc., Salt Lake City, UT (US);
Abstract
The present invention is directed to thrombo-resistant coatings for use with gas permeable biomedical devices and implants. The coatings include a siloxane surface onto which a plurality of amine functional groups have been bonded. Covalently bonded to the amine functional groups are a plurality of poly(ethylene oxide) chains, such that a single poly(ethylene oxide) chain is bonded to a single amine functional group. A quantity of at least one bioactive molecule designed to counteract a specific blood-material incompatibility reaction is covalently bonded to the poly(ethylene oxide) chains, such that a single bioactive molecule is coupled to a single polyethylene oxide chain. The methods of manufacturing the present invention include preparing a material having a siloxane surface onto which a plurality of amine functional groups have been bonded. This is preferably achieved by plasma etching with ammonia gas. The amine-containing siloxane surface is reacted with poly(ethylene oxide) chains terminated with functional groups capable of reacting with the amine groups on the siloxane surface. The material is then reacted with a solution of at least one bioactive molecule which counteracts a blood-material incompatibility reaction, such that a single bioactive molecule is coupled to a single poly(ethylene oxide) chain. The resulting siloxane surface is capable of resisting blood-material incompatibility reactions while maintaining high gas permeability.