The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Jul. 19, 1994

Filed:

Dec. 06, 1993
Applicant:
Inventors:

David V Lambert, St. Matthews, SC (US);

Mark P Goldenfield, Irwin, PA (US);

Assignee:

Westinghouse Electric Corp., Pittsburgh, PA (US);

Attorney:
Primary Examiner:
Assistant Examiner:
Int. Cl.
CPC ...
G21C / ;
U.S. Cl.
CPC ...
376260 ; 376416 ; 373145 ; 373149 ;
Abstract

Nuclear fuel rod tubes of zirconium alloy are heat treated in an induction furnace to produce a protective oxide coating two to fifteen microns in thickness. The furnace is only slightly larger than the tubes and receives the endmost eight inches of the tube. The furnace is controllable in zones along the tube. To calibrate the furnace to produce the desired temperature profile, typically a flat profile at a temperature between 650.degree. and 750.degree. C..+-.1.5.degree. C., a temperature calibration probe is provided with spaced thermocouples for sensing the temperature developed in the probe at each of the zones when heated. The probe is made of inconel 600 stainless or the like, and is dimensioned and shaped to correspond closely to the dimensions of the fuel rod tubes, including having a closed chamfered end. At the opposite end the probe protrudes from the furnace, where the thermocouple leads are terminated. The leads pass through a potting compound in the probe, such as magnesium oxide. Whereas the probe conductive structures are substantially identical to the tube, the probe responds to the electromagnetic field in the induction furnace substantially the same as does the end of the tube, permitting calibration of the induction furnace zones for a desired temperature profile, e.g., flat along the length of the tube, notwithstanding differences in induced currents that would otherwise occur due to the end of the tube or the adjacent tube material.


Find Patent Forward Citations

Loading…