The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jun. 28, 1994
Filed:
Jun. 18, 1993
Gerald G Pechanek, Cary, NC (US);
Stamatis Vassiliadis, Vestal, NY (US);
Jose G Delgado-Frias, Endwell, NY (US);
International Business Machines Corporation, Armonk, NY (US);
Abstract
The Pyramid Learning Architecture Neurocomputer (PLAN) is a scalable stacked pyramid arrangement of processor arrays. There are six processing levels in PLAN consisting of the pyramid base, Level 6, containing N.sup.2 SYnapse Processors (SYPs), Level 5 containing multiple folded Communicating Adder Tree structures (SCATs), Level 4 made up of N completely connected Neuron Execution Processors (NEPs), Level 3 made up of multiple Programmable Communicating Alu Tree (PCATs) structures, similar to Level 5 SCATs but with programmable function capabilities in each tree node, Level 2 containing the Neuron Instruction Processor (NIP), and Level 1 comprising the Host and user interface. The simplest processors are in the base level with each layer of processors increasing in computational power up to a general purpose host computer acting as the user interface. PLAN is scalable in direct neural network emulation and in virtual processing capability. Consequently, depending upon performance and cost trade-offs, the number of physical neurons N to be implemented is chosen. A neural network model is mapped onto Level 3 PCATs, Level 4 NEPs, Level 5 SCATs, and Level 6 SYPs. The Neuron Instruction Processor, Level 2, controls the neural network model through the Level 3 programmable interconnection interface. In addition, the NIP level controls the high speed and high capacity PLAN I/O interface necessary for large N massively parallel systems. This discussion describes the PLAN processors attached to a Host computer and the overall control of the pyramid which constitutes the neurocomputer system.