The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Jun. 07, 1994

Filed:

Apr. 29, 1992
Applicant:
Inventors:

Mallikarjunaswamy S Shekar, Raleigh, NC (US);

Bantval J Baliga, Raleigh, NC (US);

Assignee:
Attorney:
Primary Examiner:
Assistant Examiner:
Int. Cl.
CPC ...
H01L / ; H01L / ; H01L / ;
U.S. Cl.
CPC ...
257138 ; 257139 ; 257147 ;
Abstract

An emitter switched thyristor structure providing on-state current saturation capability is disclosed herein. The thyristor structure includes anode and cathode electrodes, and a remote electrode connected to the cathode electrode. A multi-layer body of semiconductor material has a first surface and includes regenerative and non-regenerative portions each operatively coupled between the anode and cathode electrodes. The regenerative portion includes adjacent first, second, third and fourth regions of alternating conductivity type arranged respectively in series, wherein the remote electrode is in electrical contact with the second region and the anode electrode is in electrical contact with the fourth region. The emitter-switched thyristor is turned on by applying an enabling voltage to an insulated gate electrode disposed adjacent the first surface such that a conductive channel is created in the non-regenerative portion via modulation of the conductivity therein. The device may be operated in a saturation mode by reducing the applied gate voltage such that the conductive channel in the non-regenerative portion becomes pinched off. Termination of regenerative operation is initiated by applying a non-enabling voltage to the gate electrode so as to extinguish channel conductivity within the non-regenerative portion as well as within the third region of the regenerative portion. The remote electrode collects any charges remaining in the second region of the regenerative portion subsequent to application of the non-enabling voltage and thereby expedites turn-off of the thyristor device.


Find Patent Forward Citations

Loading…