The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Apr. 05, 1994
Filed:
Jan. 08, 1993
Ta-Pen Guo, Cupertino, CA (US);
Adi Srinivasan, Fremont, CA (US);
Aptix Corporation, San Jose, CA (US);
Abstract
A static random access memory cell according to the present invention comprises first and second cross-coupled inverters. The first inverter includes a first P-Channel MOS transistor having a source connected to a first power supply node, a gate, and a drain, and a first N-Channel MOS transistor having a drain connected to the drain of the first P-Channel MOS transistor and forming an output node, a gate, and a source connected to a fixed power supply potential. The second inverter includes a second P-Channel MOS transistor having a source connected to the first power supply node, a gate, and a drain, and a second N-Channel MOS transistor having a drain connected to the drain of the second P-Channel MOS transistor, a gate, and a source connected to the fixed power supply potential. The gates of the first P-Channel and N-Channel MOS transistors are connected to the common drains of the second P-Channel and N-Channel MOS transistors and the gates of the second P-Channel and N-Channel MOS transistors are connected to the common drains of the first P-Channel and N-Channel MOS transistors to form the cross coupling connections. A pass transistor is connected between the output node of the memory cell and a bitline. Circuitry is provided to provide a first power supply potential during a read operation and a second power supply potential during a write operation to the first power supply node. The first power supply potential is higher than the second power supply potential.