The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Apr. 05, 1994

Filed:

Feb. 12, 1992
Applicant:
Inventor:

Herbert V Hitney, San Diego, CA (US);

Attorneys:
Primary Examiner:
Assistant Examiner:
Int. Cl.
CPC ...
G02B / ; G02B / ;
U.S. Cl.
CPC ...
364525 ; 364D / ; 356354 ; 356359 ; 356361 ; 359195 ; 324 95 ; 324 96 ; 455 40 ;
Abstract

Radio-wave propagation is rapidly predicted by a hybrid computational method that uses Ray Optics techniques to calculate radio field strength above a limiting radio-wave ray, Parabolic Equation techniques to calculate radio field strength below the limiting radio-wave ray and below a predetermined altitude, and a newly created Extended Optics method to compute radio field strength in an area of the atmosphere below the limiting radio-wave ray and above the predetermined altitude. Rays in the extended optics area are initialized from the elevation angle that rays traced through the parabolic equation area make with the predetermined altitude. Where reflected, direct or origin created rays do not exist within the parabolic equation area, the elevation angle for the ray that does exist at the furthest range (optical limit) is used to initiate ray tracing in the extended optics area for ranges beyond the optical limit. Where the refractive index varies along the predetermined altitude, adjustments to the elevation angle used to initialize rays within the extended optics area are made. Propagation factors, determined through the Parabolic Equation method, are assigned to the rays traced through the extended optics area based upon the propagation factors in existence at the predetermined altitude. Field strength or propagation loss within the extended optics area is calculated from an interpolation between propagation factor values assigned to the extended optics rays.


Find Patent Forward Citations

Loading…