The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Mar. 29, 1994
Filed:
Nov. 27, 1992
James E Burke, Villa Park, IL (US);
Anton Z Zupancic, Kirtland, OH (US);
Thomas R Miller, St. Charles, IL (US);
Patrick P McNally, Geneva, IL (US);
Picker International, Inc., Highland Heights, OH (US);
Abstract
A CT scanner has an x-ray tube (B) which is carried by a rotating gantry portion around a patient receiving region (12). A large diameter, annular radiator (30) is connected to the rotating gantry for rotation with the x-ray tube. A cooling oil is circulated around the x-ray tube and through passages (32, 74, 100) of the rotating radiator. An annular stationary member is mounted to a stationary gantry portion (A) of the CT scanner. In the embodiment of FIGS. 2 and 3, the stationary member is an annular tube (36) which substantially surrounds the rotating radiator except for an annular access aperture (38). Spray jets (40) spray the rotating radiator with water which is drained (42), circulated to a remote heat exchange or cooling apparatus (D), and recirculated to the spray nozzles. Baffles (52, 54), gutters (58), lip and baffle arrangements (54, 56), and the like, inhibit the sprayed water from escaping from the tube (36). In the embodiment of FIG. 4, the water is sprayed on a wick member (76). Water evaporates from the wick, cooling the rotating radiator with evaporative cooling. In the embodiments of FIGS. 4 and 5, the rotating and stationary members include interleaved fins vanes (70, 82) between which heat is transferred by air flow. In the embodiment of FIG. 6, a layer of water is carried by centrifugal force into the air gap between a horizontal rotating heat transfer surface (102) and a horizontal stationary heat transfer surface (108).