The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Feb. 01, 1994

Filed:

Dec. 23, 1992
Applicant:
Inventors:

Jun Kodama, Aso, JP;

Renate Foerch, Oestrich-Winkel, DE;

N Stewart McIntyre, London, CA;

George S Castle, London, CA;

Attorney:
Primary Examiner:
Int. Cl.
CPC ...
B05D / ;
U.S. Cl.
CPC ...
427576 ; 427569 ; 427222 ; 427296 ;
Abstract

Surfaces of fine polystyrene (PS) and polymethyl methacrylate (PMMA) powders were modified by exposure to the downstream products of a nitrogen or oxygen microwave plasma. The effects of nitrogen and indium incorporation in the powder surface were studied with emphasis on variations in the triboelectric properties of the powder. X-ray photoelectron spectroscopy (XPS) was utilized to determine the changes in surface elemental composition. After nitrogen plasma treatment, the C 1s peak profiles suggested the formation of amines in the case of PS, and the formation of imines and amides in the case of PMMA. Oxygen plasma treatment suggested the formation of hydroxyl and carbonyl groups on the surfaces of both PS and PMMA. After treatment with a nitrogen or oxygen plasma, the charge-to-mass ratio (Q/M) of PS and PMMA powders in contact with carrier particles was measured using the cage blowoff method. The surface charge density (Q/A) was calculated from Q/M. The Q/A of nitrogen plasma-treated PS powder was seen to shift towards positive charge with small increases in the nitrogen concentration. The Q/A of oxygen plasma treated PS powder initially shifted toward negative charge, but changed towards positive charge with higher oxygen concentrations. Plasma-treated PMMA powder showed a different behaviour and the variation of Q/A on PMMA was much less than that of PS. Results suggest that triboelectrification of the polymer powder may be related to changes in the electrical surface states, and that nitrogen may act as a group V dopant within the PS surface.


Find Patent Forward Citations

Loading…