The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Nov. 16, 1993
Filed:
Mar. 03, 1992
David L Stanley, Southport, Merseyside PR9 8NO, GB;
Michael J Leisten, Boosbeck, Cleveland, GB;
Adrian K Lefedjiev, Hardwick, Stockton-on-Tees, GB;
Roumen D Petkov, Middlesbrough, Cleveland, GB;
Stefan T Hadjivassilev, Middlesbrough, Cleveland, GB;
Other;
Abstract
In one embodiment, a solid state DC power supply includes an inverter (30) having two half-bridges (32, 34) in which are provided pairs of MOSFETS (Q5-Q12) used as switching elements. An output transformer (60) and a rectifier (85) are connected to output terminals (T60). A feedback path includes switching control means (40) separate primary and secondary drive means (10, 20) supplying drive pulses to the switching means (Q5-Q12) in the inverter (30). The secondary drive means (12, 13) amplifies the pulse output of the primary drive means (11) in order to improve the switching speed of the inverter (30). Current detection is provided by a transformer (70) connected to switching (40). The primary and secondary drive means receive pulses from a pulse width modulator (IC5) the output of which is isolated by transformers (TX1, TX2). In a modification, a power converter in the form of a DC power supply includes parallel MOSFET (M) and IGBT (I) switch pairs in each arm of a full wave bridge configuration. The IGBT (I) has lower conduction loss and higher switching loss than the MOSFET (M) so that, when appropriately timed driving pulses are applied, the IGBT (I) carries current in most of a conduction period and the MOSFET (M) switches off whilst a low voltage is maintained across the IGBT (I). This reduces conduction and switching losses to a minimum.