The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
May. 11, 1993

Filed:

Feb. 11, 1991
Applicant:
Inventors:

G Neil Holland, Chagrin Falls, OH (US);

Douglas M Blakeley, Euclid, OH (US);

Theodore J Reisker, Lyndhurst, OH (US);

David A Molyneaux, Willowick, OH (US);

Assignee:

Picker International, Inc., Highland Heights, OH (US);

Attorney:
Primary Examiner:
Int. Cl.
CPC ...
A61B / ;
U.S. Cl.
CPC ...
1286532 ; 128671 ; 128696 ; 128901 ;
Abstract

A cardiac electrode (40) has a plug (48) which is frictionally received in a socket (50) of an electrical lead (56). An impedance (54) is connected in series between the electrical lead and the socket to pass ECG signals substantially unattenuated and for blocking radio frequency signals induced in the lead from reaching the socket and the electrode and heating the electrode to a sufficient temperature to burn the patient. The impedance includes an LC circuit (66, 68) which freely passes low frequency signals, such as cardiac signals, but which is tuned to resonance at radio frequencies, particularly at the frequency of resonance excitation and manipulation pulses of a magnetic resonance imager (A). Alternately, the impedance may include a resistive element for blocking the induced currents. A temperature sensor (60) is mounted in intimate contact with an electrically and thermally conductive socket portion (52) to sense the temperature of the electrode, indirectly. A temperature sensor lead (62), the cardiac lead (56), and a respiratory or other anatomical condition sensor are connected with a multiplexing means (140) which cyclically connects the output signals thereof with an analog to digital converter (142). The digital signals are converted to digital optical signals (102) to be conveyed along a light path (104) out of the examination region. The bits of the received digital signal are sorted (144) between an R-wave detector (120), a temperature limit check (122) which checks whether the temperature of the electrode exceeds preselected limits, and a respiratory detector (132).


Find Patent Forward Citations

Loading…