The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
May. 04, 1993
Filed:
May. 30, 1991
Mehrdad Ehsani, Bryan, TX (US);
The Texas A & M University System, College Station, TX (US);
Abstract
An inverse dual converter circuit (20) provides continuous voltage step-up or step-down control over a wide range and without the need of a transformer. The converter comprises an input DC voltage source (22) for generating an input DC voltage. An inverse dual converter bridge receives the input DC voltage and comprises a network of source voltage converters (26), an AC link circuit (28), and a network of load voltage converters (32). The source voltage converters (26) and load voltage converters (32) operate at the same frequency, but at a different phase. The AC link circuit (28) stores energy to be transferred from the source voltage converters (26) to the load voltage converters (32) and supplies reverse voltage bias for commutation. The inverse dual DC-DC (20) converter may include circuitry (180) for controlling the output DC voltage and for regulating output current continuity. Topological variations of the basic circuit include transformer coupled (140), multi-phase (80) and multi-pulse derivations. The single-phase inverse dual converter circuit (20) offers a buck-boost operation over a wide range without a transformer, bi-directional power flow, and complimentary commutation of converters. The commutation mechanism provided in the inverse dual converter circuit (20), when combined with gate turn-off switch thyristors provides zero current switching. This allows operation at high frequencies in high-power applications, with high efficiency.