The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Apr. 20, 1993
Filed:
Feb. 15, 1991
Takeshi Maeda, Tokyo, JP;
Koji Iwasa, Tokyo, JP;
Seiko Instruments, Inc., , JP;
Abstract
Disclosed is an electro-optical device comprising two opposite substrates, a material having an electro-optical effect and sealed between the two opposite substrates, a large number of row electrodes formed on one of the two opposite substrates, a large number of column electrodes formed on the other of the two opposite substrates, and pixel electrodes, pixel electrodes arranged in a matrix form on at least one of the two opposite substrates, and nonlinear resistance elements arranged in a matrix form on at least one of the two opposite substrates, wherein a plurality of nonlinear resistance elements are formed on each of the pixel electrodes, the each pixel electrode is connected to a first row or column electrode through a first nonlinear resistance element and to a second row or column electrode through a second nonlinear resistance element, a signal is applied to the pair of row electrodes or column electrodes to control the resistances of the pair of nonlinear resistance element to cause the nonlinear resistance element to serve as a switch, and data is written from the column electrodes or row electrodes, thereby suppressing variations in charge injection amounts caused by nonuniform characteristics and deteriorations over time of the nonlinear resistance element, and at the same time suppressing variations in leakage amounts by data patterns, and hence arbitrarily and accurately controlling an RMS voltage.