The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Mar. 02, 1993

Filed:

Dec. 14, 1990
Applicant:
Inventors:

Harold J Vinegar, Houston, TX (US);

George L Stegmeier, Houston, TX (US);

Eric P de Rouffignac, Houston, TX (US);

Charles C Chou, Houston, TX (US);

Assignee:

Shell Oil Company, Houston, TX (US);

Attorney:
Primary Examiner:
Int. Cl.
CPC ...
E02D / ;
U.S. Cl.
CPC ...
405128 ; 210747 ; 405258 ;
Abstract

An in situ method for removal of contaminants from soil imposes a vacuum on the soil through perforated heater wells that are positioned in the soil. The heater wells heat the soil to elevated temperatures by thermal conduction. The heater wells are permeable to vapors which emanate from the soil when heated and which are drawn toward the heater wells by the imposed vacuum. An impermeable flexible sheeting on the soil surface reduces the amount of air that is being pulled into the heater well from the atmosphere. A thermal insulator covers the soil surface and reduces heat losses from the soil surface. The heater wells are connected to a vacuum manifold for collection of vapors. A heat front moves away from the heater wells through the soil by thermal conduction, and the superposition of heat from a plurality of heater wells results in a more uniform temperature rise throughout the well pattern. Soil contaminants are removed by vaporization, in situ thermal decomposition, oxidation, combustion, and by steam distillation. Both the presence of water vapor and the low pressure results in vaporization of the contaminants at temperatures well below their normal boiling points. Moreover, the heater wells and the nearby soil are extremely hot and most contaminants drawn into the wells will decompose with a residence time of the order of seconds. The heater well can also be packed with a catalyst that accelerates high temperature decomposition into simpler molecules. Water vapor and remaining contaminants may be incinerated in line or may be collected in a cold trap upstream from the vacuum pump.


Find Patent Forward Citations

Loading…