The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Feb. 09, 1993
Filed:
Aug. 06, 1991
Nathaniel R Quick, Randolph, NJ (US);
James C Kenney, Indianapolis, IN (US);
Other;
Abstract
Metal and ceramic particles of various morphologies are clad with a coating from the transistion metal group consisting of silver, gold, copper, nickel, iron, cobalt, aluminum etc., or combinations thereof, to provide improved coated particles for microelectronics or metal matrix composites or other uses. Refractory metal precursor core particles, such as tungsten, molybdenum, niobium and zirconium, as examples, are provided from a composite of tungsten and copper, for example, made by pressurizing and infiltrating or liquid phase sintering of molten copper into a porous tungsten skeleton. Precursor chip particles derived from a tungsten impregnated billet are used as starter particles which may be further enhanced by cogrinding in an attritor ball mill with smaller copper particles to thereby produce an enhanced copper clad-coating of tungsten particles with predetermined percent by weight of copper and tungsten content. The resulting particles exhibit improved electrical and thermal expansion coefficient matching properties for use on microelectronic ceramic substrates and when used for metal matrix composites, provides more uniform distribution of the dispersed strengthening particulate phase in the matrix. In another embodiment, ceramic particles are clad-coated with selected metals so that they can be used in ceramic-metal matrices, thereby producing systems wherein the components are uniformly dispersed throughout the system.