The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jan. 05, 1993
Filed:
Dec. 06, 1990
Damien F Gray, Mountain View, CA (US);
Ganapati R Mauze, Sunnyvale, CA (US);
Teddy Kiang, Sunnyvale, CA (US);
Hewlett-Packard Company, Palo Alto, CA (US);
Abstract
An optical fiber is used in conjunction with a sensor capable of sensing more than one analyte. A first fiber optic sensor cell is used for measuring any combination of ionic species and a second fiber optic sensor cell is used for measuring all gaseous species. In one embodiment, a doped polymer is formed utilizing a hydrophilic polymer which immobilizes a pH sensitive dye and a potassium sensitive fluorescence dye, allowing pH to be measured by detecting the color change of the pH sensitive dye, and the potassium ion concentration to be measured by the change in fluorescence intensity of the potassium sensitive dye. In an alternative embodiment, a doped polymer is formed utilizing a hydrophilic polymer which immobilizes a calcium or sodium ion sensitive fluorescence dye in order to form either a combined pH/calcium sensor or a combined pH/sodium sensor, respectively. Any desired fluorescence dye can be utilized in order to provide detection of a desired analyte or any combination of analytes in conjunction with a pH measurement. A gas sensor is provided utilizing a doped polymer which immobilizes a fluorescence dye sensitive to the gas of interest. In one embodiment, an oxygen sensitive fluorescent dye allows measurement of the partial pressure of oxygen utilizing fluorescence quenching of the oxygen sensitive dye. The concentration of other gases such as nitrous oxide, carbon dioxide, and halogenated anesthetic gases, are measured utilizing infrared absorption within the doped polymer. Each such gas is individually detected utilizing its associated characteristic absorption wavelength.