The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Dec. 08, 1992

Filed:

May. 17, 1991
Applicant:
Inventors:

Tadashi Fukuzawa, Tokyo, JP;

Hiro Munekata, Mahopac, NY (US);

Attorneys:
Primary Examiner:
Assistant Examiner:
Int. Cl.
CPC ...
H01L / ;
U.S. Cl.
CPC ...
257 14 ; 257 22 ; 257 78 ; 257617 ;
Abstract

Disclosed is a new method suitable for making highly integrated quantum wire arrays, quantum dot arrays in a single crystal compound semiconductor and FETs of less than 0.1 micron gate length. This makes it possible to construct a high-performance electronic device with high speed and low power consumption, using a combination of low-temperature-growth molecular beam epitaxy (LTG-MBE) and focused ion beam (FIB) implantation. The compound semiconductor (GaAs) epitaxial layers, which are made by LTG-MBE, are used as targets of Ga FIB implantation to make Ga wire or dot arrays. Precipitation of arsenic microcrystals, which are initially embedded in a single crystal GaAs layer and act as Schottky barriers, are typically observed in an LTG GaAs layer. A thermal annealing process, after implantation, changes the arsenic microcrystals to GaAs crystals if the arsenic microcrystals are in the region in which the Ga ions are implanted. A wire-like shape free of As microcrystals then acts as a quantum wire for electrons or holes whereas a dot-like shape free of As microcrystals acts as a quantum dot. The co-existence of Ga ions and dopant ions, which provides conductivity type carriers opposite to the conductivity type of the majority carriers of a channel region of an FET, provides the fabrication of very narrow junction gate region for any FET.


Find Patent Forward Citations

Loading…