The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Dec. 08, 1992

Filed:

Aug. 11, 1989
Applicant:
Inventors:

G Neil Holland, Chagrin Falls, OH (US);

Douglas M Blakeley, Euclid, OH (US);

John R Stauber, Cleveland, OH (US);

David C Flugan, Cleveland, OH (US);

Kenneth S Denison, Shaker Hts., OH (US);

Assignee:

Picker International, Inc., Highland Heights, OH (US);

Attorney:
Primary Examiner:
Int. Cl.
CPC ...
G01R / ;
U.S. Cl.
CPC ...
324322 ; 324307 ; 36441313 ;
Abstract

A magnetic resonance imaging apparatus includes one or more digital transmitters (B), one or more digital receivers (C), and digital data processing circuitry (D) which are all clocked and controlled by a single clock (F). Each digital transmitter includes a numerically controlled modulated oscillator (20) which processes digital phase and frequency signals to produce an output which addresses a wave-form map stored in a PROM (22). Each wave-form output of the PROM is multiplied (24) by a digital amplitude profile signal to generate a phase, frequency, and amplitude modulated digital RF signals. A clock gate (30) controls clocking of the digital modulation to create RF pulses. A digital-to-analog converter (28) converts the digital information to an analog RF pulse which is applied to a subject in an image region. The receivers each include an analog-to-digital converter (60) which digitizes the magnetic resonance signal emanating from the subject in the image region with four fold oversampling. A pair of FIR filters (62a, 62b) multiply the digital resonance signal by digital sine and cosine filter coefficients to create in-phase and out-of-phase digital magnetic resonance signal components. After additional digital filtering (64a, 64b), the digital in-phase and quadrature components are Fourier transformed (70) and accumulated in an image memory (72) to form an image representation.


Find Patent Forward Citations

Loading…